【关键词】 混沌理论;,中医现代化
摘要: 简介了混沌理论的基本思想及其基本特性,即混沌(chaos)是在确定性非线性系统中的内在随机行为,可表现出相空间的奇怪吸引子、对初始状态的敏感依赖性、系统的运动性质与参数密切相关等特性。认为混沌理论可解释复杂的生命活动如脑电活动、心脏节律变化、生理系统以及疾病过程的多样性和复杂性;并可利用混沌控制让生命过程向符合人类意愿的方向发展。指出中医的证、中药方剂的配伍和作用以及在辨证的基础上论治都可以用混沌理论得到恰当解释,故运用混沌控制手段使机体向理想状态转化,达到阴阳平衡,有望成为中医药现代化研究的一个新领域。
关键词: 混沌理论; 中医现代化
“混沌”在传统意义上,是指混乱、杂乱无章的状态。但现代混沌学所研究的混沌(chaos),是指在确定性非线性系统中,不需附加任何随机因素出现的类似随机的行为(内在随机性),是一种极为普遍的复杂现象。在物质世界中,混沌现象无处不有。混沌科学是随着现代科学技术的迅速发展而出现的新兴交叉学科,首先起源于气象学。1963年,美国气象学家洛伦兹(Lorenz E N)在数值实验中首先发现在确定性系统中有时会表现出随机行为 [1] ,从此揭开了混沌研究的序幕。天气变化就是一种混沌现象,“天有不测风云”,就是指气候系统对初始条件非常敏感,初始条件的极微小差别会导致巨大的天气变化这一混沌运动的基本性质。1975年李天岩(Li T Y)和约克(Yorke J A)给出了混沌的一种数学定义 [2] ,即Li-Yorke定义,该定义描述了混沌初始条件的微小差别导致后来的巨大变化。混沌现象的发现使人们逐渐认识到客观事物的运动除了稳定、正常、周期运动外,还存在着一种具有更为普遍意义的形式,即无序的混沌。在确定论和概率论这两套体系的描述之间存在着由此及彼的桥梁。
1 混沌运动的基本特性
混沌是指服从确定性规律但具有随机性的运动,其基本特性表现如下 [3] :(1)相空间吸引子的奇怪特性。描述系统运动的方程在平面上都有投影的轨迹,如果这些轨迹被限制在相平面的有限区域内,这样的有限区域被称为运动系统的吸引子。非线性方程的轨迹都有吸引子,简单的吸引子是不动点(稳定定态)和闭曲线(周期运动),而混沌运动的吸引子是奇怪的吸引子,其轨迹不仅有折叠和交叉,而且在某些部位十分密集并形成带,带与带之间有空隙。如果采样点极大,把相空间放大,可以发现带内还有被不同层次的小的空隙隔开的带,其结构与形状与原来的带和空隙相似。因此,混沌运动的奇怪吸引子具有无穷层次的自相似结构,即分形。一个系统当被确定为混沌系统时,就可以对其建立数学模型,定量描述系统的运动规律。
(2)对初始的敏感依赖性。如果系统中存在混沌,则初始条件不同,即使是极小的差别,经过一段时间的运动后,就会出现相差甚远或完全不同的结果。利用混沌系统对初始条件的敏感性,对混沌系统进行微小扰动,可以控制混沌系统使之趋向期望状态。
2 混沌理论在医学中的应用价值
2.1 混沌理论可揭示生命活动的多样性和复杂性 生命活动存在着多样性和复杂性。生物体不是各种生物分子功能的简单叠加,不同的生物分子与组织之间有着复杂的网络关系,生物的许多系统都是复杂的非线性系统,而混沌作为非线性理论中的一个组成部分及其特点,自然而然地被应用到了生物领域,成为研究生物复杂系统规律的新方法和新手段。目前的研究结果说明,许多生物系统中都有混沌现象存在。
脑电的混沌活动特性与大脑的功能状态密切相关。正常状态下脑电混沌活动的关联维数、李雅普诺夫指数、复杂度等混沌指标较高,处于不稳定状态。这种不稳定性使神经系统对外界环境有很强的适应能力。在神经网络中,其适应性与神经网络活动的复杂度、自由度和混沌程度成正相关 [4] 。而脑器质病变、精神心理疾病可使脑电混沌活动发生改变,在脑功能受损的病理状态下,混沌指标会降低 [5] 。心脏节律变化除有周期性外还具有非线性变化的特点,各种生理因素所致的心率总变化不是各因素作用的简单叠加,故用混沌分析技术可以分析心率非线性变化的特点。Osaka等 [6] 发现抑制交感神经活动可以增加关联维数,而抑制副交感神经系统活性可以降低关联维数,从而提出用心率变异的关联维数作为人类自主神经功能的新指标。关联维数也可以反映心率稳定状态,高维暗示系统的复杂结构,提示正常的心率自主控制。用Holter系统研究曾患过室颤的患者、正常人及无室颤的室性心动过速患者的研究表明,心率的低混沌维预示着室颤的危险 [7] 。
混沌分析可以解释生理系统的复杂性。一般认为,疾病和衰老都是由于人体的正常周期节律被扰乱。可是对心脏窦性节律的研究发现,正常人即使在静息状态下,R-R间隔仍表现出很大程度的变化,呈现出混沌状态,这种混沌主要是由自主神经系统控制的。疾病状态时R-R间隔趋于整齐即复杂性减小了。同样,随着年龄的增加,这种复杂性亦同样减小。Kaplan等 [8] 用混沌分析方法观察了健康老人的心率和血压的复杂性,发现其复杂性相对于年轻人减小,因此与一般直觉相反,当心脏处于年青和健康时期时,心率和血压表现出不规则性和不可预见性,而日益增强的规则行为往往伴随着衰老和疾病,预示着系统复杂性的减小。
混沌分析方法还可应用于研究疾病的流行过程。王琰等 [9] 利用混沌动力学相空间重构技术对百日咳逐月发病数进行分析,结果发现百日咳流行是混沌的,经过计划免疫后混沌程度下降,趋向平稳状态。
2.2 混沌理论可用于调整生命活动的过程 长期以来,人们认为混沌是不可控制的。1989年,美 国马里兰大学的物理学家Ott、Grebogi和Yorde3人首先从理论上提出了控制混沌的方法,称为OGY方法 [10] 。它的主要思想是,混沌系统的奇怪吸引子中分布着许多不稳定的不动点,按照需要挑选出其中一个点来进行稳定控制。为了实现对这个选定不动点的稳定控制,要选择被控制系统的一个易调节的参数,在系统靠近选定的不动点时,对该参数进行微小的扰动,使系统向该点移动,从而使混沌系统进入所期望的运动。OGY方法的有效性在许多领域被验证,并在理论上和应用上取得了新的进展。例如用OGY控制混沌方法成功地实现了对兔子心律不齐的控制 [11] 。以后,各种混沌控制方法都相继报导,混沌控制已成为近年来一个带有挑战性的研究执点,一些混沌控制方法已在生物医学工程领域得到了应用。
混沌系统对初始条件的微小干扰有较大的敏感性,例如著名的“蝴蝶效应”就是典型例子:大气混沌系统初始条件的微小的干扰在迭代过程中被加倍放大,即在巴西蝴蝶扇动翅膀可引起美国上空气流巨大变化(风暴)。混沌控制(controlling chaos)的基本原理是利用混沌系统对初始条件的敏感性来有效地控制系统,在特定的微小扰动下引导混沌系统进入稳定的有序状态或者所期望的混沌状态 [12] 。这是近年来一个带有挑战性的研究热点。近年来的研究从各个方面论证了许多生物系统的混沌特性,能否运用混沌控制使生物系统趋向所期望的状态成为当今生物医学研究的难点和热点。由此,人们自然会提出,能否运用混沌控制来解决医学中的疑难问题?例如对心律不齐的控制,以及对癫痫发作时神经元的异常放电的控制等。这些前沿课题的研究,给医学研究带来了全新的方法。
利用混沌系统初始扰动的敏感性,可以在心脏系统偏离正常状态的初期,只用微小的扰动即可控制心脏的混沌状态,使偏离正常状态的心脏系统及时地从有害的无节奏状态回复到正常状态。这给予心脏起搏器的研究一个全新的启示 [13] ,是治疗心律失常的前沿科学研究之一。混沌控制也被尝试运用到抑制癫痫发作。Schiff等 [14] 用OGY控制方法对神经元不规则放电进行控制。他们监视癫痫病灶的不规则放电,在出现系统的初始条件微小偏离时,及时选定和辩识系统的不稳定不动点,按目标的每一点预测其下一步位置,加入刺激(扰动),从而控制系统,及时使系统接近和达到预先确定的状态,达到治疗癫痫的目的。
3 混沌理论与中医现代化
在传统的中医药领域,混沌分析方法也被进行过有益的尝试。杨国平等 [15] 用混沌分析理论来研究穴位与脏腑的相关性。他们将40例胆石症患者和25例正常人的耳廓胆穴、胃穴的穴位电关联维数进行比较,结果表明胆石症患者耳廓胆穴关联维数较正常组显著增高,而两组耳廓胃穴关联维数则无显著性差异,提示穴位电关联维数变化和相应脏腑的机能状态密切相关。 混沌理论为现代科技提供了全新的思维方式和科学方法论,同样地,也会对中医现代化带来有益的启示。例如中医的病因病机学理论:各种病因作用于机体,通过各种病机(也就是动力学过程)引起病变,出现各种证候,根据中医理论可辨证。病因可引起病变,这是确定性过程,但不同的患者可出现不同的证候表现,进而有不同的证,这是随机的。疾病的发病过程可被认为是混沌动力学过程。在中医领域,我们自然也会联想到中医病因病机和辨证系统的混沌运动,以及在辨证基础上的论治,即怎样运用混沌控制的手段使机体向理想状态转化,达到阴阳平衡,这也许是中医现代化研究的一个新领域。
人体有很多穴位,形成了经络系统,可以用多种方法证实这是一个混沌系统。利用混沌系统对初始扰动的敏感性,刺激某些穴位,实行混沌调控,使系统向着期待的方向变化,调节脏腑功能,达到治疗疾病的目的。还有中药方剂往往由多味中药组成,每味中药的成份又非常复杂,它们之间构成了非常复杂的协同关系,显然属于非线性关系。中药方剂的内部关系是确定性系统内随机运动,属于混沌的范畴。疾病的动力学过程是混沌的,中药方剂的作用也是混沌的,这就是用混沌来控制混沌(controlling chaos by chaos)的方法。该方法的基本思想是一个混沌系统的动态特性可以通过耦合另一个混沌系统来控制 [16] 。设两个混沌系统分别为A和B,可以表达为:
A(被控制的混沌系数):x=F(x) (1)B(控制的混沌系数):y=g(y) (2)两个系统通过参数λ和μ进行线性耦合,即对A和B的负反馈控制分别为:
F 1 (t)=λ[x(t)-y(t)] (3)
F 2 (t)=μ[y(t)-x(t)] (4)
λ&>0和μ&>0是扰动的权重。该方法的特点是 用修正系统的行为对系统进行控制。因此可以设想 利用混沌控制的原理来探讨中药的药理作用。我们可以设想建立中药方剂的药物动力学和药效学数学模型,研究其混沌运动的性质,改变方剂的组成和剂量,观察其参数的改变,与疾病病机数学模型参数进行耦合,以寻找最佳的组方。
混沌控制方法还可以与其他的一些新兴学科结合在一起。我们都知道,根据中医理论,各种病因作用于人体,产生了一系列的病理变化,形成了疾病。这一过程关系错综复杂,形成了非常复杂的网络关系。如何阐明其复杂关系,我们可以考虑运用Petri网理论 [17] 。Petri网是由德国的Carl Adam Petri博士提出的研究信息系统及其相互关系的数学模型,它以研究系统的组织结构和动态行为为目标,着眼于系统中可能发生的各种变化以及变化之间的关系,在控制科学和计算机科学上得到广泛的应用。我们可以从网的状态节点和变迁节点着手,探讨疾病内部复杂的依赖、并发和冲突关系,以及中药方剂作为外部事件对其控制等。这些复杂行为都可以和混沌联系在一起。
混沌控制的目标还应该和最优化方法结合在一起。最优化问题可以概括为这样的数学模型,即给定一个集合(可行集,即可能的调控目标)和该集合上定义的目标函数(达到目标所能采取的手段),计算函数在集合上的极值,根据约束条件选择最佳的方案,达到最佳的目标。
混沌和混沌控制的研究,给生物医学中一些疑难病症的预防和治疗带来了一个全新的思路,同样地也给中医现代化研究开辟了新的途径。但是,如何成功有效地应用混沌理论于中医现代化,需要进行高水平、开拓性的研究,尚有许多问题待探讨。
参考文献
[1] Lorenz E N.Deterministic nonperiodic flow [J].Atoms Science,1963,20:3.
[2] Li T Y,Yorke J A.Period three implies chaos [J].AmericanMathmatics,1975,82:5.
[3]王林,曲春香,王宜怀.混沌与生物系统的研究[J].生物学通报,2002,37(8):12.
[4] Rabinovich M I,Abarbanel D I.The role of chaos in neural systemJ].Neuroscience,1998,87:5.
[5] Sarbadhikari S N,Chakrabarty K.Chaos in the brain:a short review alluding to epilepsy,depression,exercise and laterization [J].Med Eng Phys,2001,23:445.
[6] Osaka M,Saitoh H,Atarashi H,et al.Correlation dimension of heart rate variability:a new index of human automatic function [J] Front Med Biol Eng,1993,5(4):289.
[7] Kroll M W,Fulton K W.Slope filtered pointwise correlattion withprefibrillation heart rate data [J].Electrocardiol,1991,24(suppl):97.
[8] Kaplan DT,FurmanMI,Pincas SM,et al.Aging and complexity ofcardiovascular dynamics [J].Biophys,1991,59(4):945.
[9]王琰,朱伟勇,时景 .疾病流行过程的混沌分析[J].中国卫生统计,1999,16(2):82.
[10] Ott E,Grebogi C,Yorde J A.Controlling chaos [J].Phys Revlett,1990,66:1196.
[11]方锦青.非线性系统中混沌的控制与同步及其应用前景[J].物理学进展,1996,16:1.
[12] Shinbrot T,Grebogi C,Ott E,et al.Using small perturbations tocontrol chaos [J].Nature,1993,363:411.
[13]田心.混沌控制及其在生物医学中应用前景[J].国外医学・ 生物医学工程分册,1999,22(5):257.
[14] Schiff S J,Jerger K,Duong D H,et al.Controlling chaos in thebrain [J].Nature,1994,370:615.
[15]杨国平,贾晓航,刘加海.混沌分析在经络―脏腑相关研究中的应用[J].中国中医基础医学杂志,1998,4(10):49.
[16] Kocarev L,KapitaniakT.On an equivalence of chaotic attractor [J]. J Phys A,1995,28:249.
[17]袁崇义.佩特里网[M].南京:东南大学出版社,1989.转贴于