作者:杨军,陈晓黎,苏宝山,王一理,司履生
【摘要】 目的 构建增强型绿色荧光蛋白(EGFP)标记的Hela细胞系。方法 PCR和DNA测序鉴定pEGFPC1真核表达质粒,采用Qiagen tip 500进行pEGFPC1真核表达质粒DNA的提取和纯化;cellfectin转染Hela细胞,G418筛选,有限稀释法单克隆培养,荧光显微镜进行荧光检测EGFP的表达,采用激光共聚焦显微镜观测器检测荧光特性。结果 PCR和DNA测序证实pEGFP质粒结构正确;在倒置荧光显微镜下,转染24h后,部分Hela细胞可见绿色荧光,转染72h时,大约80% Hela细胞内均可见绿色荧光。加入含G418的选择性培养基进行选择性培养,选择荧光较强的Hela细胞经有限稀释,持续筛选及克隆化培养,获得稳定表达绿色荧光的Hela细胞克隆,扩大培养并传至10代以上,将此细胞株命名为HelaEGFP。激光共聚焦显微镜观察发现:在蓝光(-395nm)激发时,HelaEGFP细胞绿色荧光激发波长为395nm,最大发射峰为509nm。结论 HelaEGFP细胞株具备稳定表达EGFP的能力,为实时可视化进行宫颈癌侵袭转移机制的研究奠定了基础。
【关键词】 增强型绿色荧光蛋白;宫颈癌;Hela细胞
ABSTRACT: Objective To construct a novel enhanced green fluorescent protein (EGFP) tagged Hela cell subline. Methods EGFP gene fragment was amplified from pEGFPC1 vector and confirmed by PCR and gene sequencing. pEGFPC1 vector DNA was isolated and purified by Qiagen tip 500 for transfection into Hela cells. After Hela cells were transfected with pEGFPC1 by cellfectin reagent, single cell clones were isolated by the selective medium containing geneticin (G418) and limiting dilution in 96well flatbottomed culture plates. We replenished the selective media every 3-4 days, and observed the percentage of surviving cells. The fluorescent signal of Hela cells was detected using the convert fluorescent microscope every 24 hours. The character of EGFP was detected with laser confocal microscopy. Results The pEGFPC1 vector was sequenced and amplified respectively to confirm that EGFP gene was in the correct orientation for expression and contained an ATG and a stop codon. After Hela cells were transfected with the indicated expression pEGFPC1 vectors 24 hours, the green fluorescence could be found from Hela cells. The intensity of green fluorescence and the number of Hela cells expression green fluorescence increased steadily until 80% Hela cells, after 72 hours. From then on, Hela cells were cultured with selective media containing G418 while untransfected Hela cells were killed. This process took up to 4 weeks. EGFPlabeled Hela cells displayed green fluorescence under fluorescent microscopy and showed highlevel stable expression of EGFP. The excitation peak of EGFP was at 395nm (blue), and its emission peak was at 509nm (green) for laser confocal microscopy. Conclusion The highlevel stable EGFPexpressing Hela cell line (HeLaEGFP) provided a simple and reliable tool for studying human cervical cancer in vivo. It may be valuable for further study on molecular mechanisms of cervical cancer metastasis.
KEY WORDS: enhanced green fluorescent protein (EGFP); cervical cancer; Hela cell line
随着性传播疾病的流行,宫颈癌的发病有逐年上升的趋势。宫颈癌在全世界的发病率仅次于乳腺癌而居第二位,全球每年约有50万妇女新发生宫颈癌。在我国宫颈癌是危害妇女的主要恶性肿瘤之一。对宫颈癌侵袭转移机制的研究已成为肿瘤基础及临床研究的热点。实现实时可视化研究肿瘤细胞在体内侵袭转移的运动轨迹及其时空动力学过程,成为解决这一难题的突破口[1]。由于大多荧光染料易于淬灭,缺乏对瘤细胞具有灵敏性高、稳定性好、可靠性强的标记基团,使得目前对于肿瘤侵袭和转移机制及其发展规律尚缺乏深入的认识。20世纪90年代以来,伴随荧光蛋白技术、光学技术,特别是实时显微镜技术的革命性发展[2],绿色荧光蛋白(green flurenscent protein, GFP),特别是增强型绿色荧光蛋白(enhanced green flurenscent protein, EGFP)作为一类新型的荧光探针,以其独特的生物学特性为进行活细胞的实时可视化研究提供了可能[36]。本研究直接将pEGFP真核表达载体转染人Hela细胞,经G418抗性筛选并扩大培养,以期建立能够稳定高表达EGFP并能连续传代的Hela细胞系,为宫颈癌的侵袭转移机制的实时可视化研究奠定基础。
1 材料与方法
1.1 材料
pEGFP质粒购自Clongtech公司;Hela细胞系为本研究室保存;RPM1640、胎牛血清、OPTIMEM无血清培养基、Cellfectin转染试剂盒购于Invitrogen;HEPES购于Gibco公司;琼脂粉、胰酶、台盼蓝、DMSO、G418购于Sigma公司;Qiagen tip 500质粒提取试剂盒购于Qiagen公司。二氧化碳培养箱(USA);倒置荧光显微镜(Olympus, Japan)。
1.2 pEGFP质粒的PCR鉴定
取-70℃冻存含pEGFP质粒的菌株,划线接种于含50mg/L Amp(氨苄青霉素)的LB琼脂培养皿上,37℃倒置培养过夜或16-20h。挑取单菌落于5mL含50mg/L Amp的LB液体培养基中,37℃振荡培养过夜。采用碱裂解小量质粒提取法提取质粒DNA,溶于20μL去离子水中(参见分子克隆)。取2μL质粒DNA,在10g/L(1%)TBE琼脂糖凝胶电泳分析,80V/40mA电泳,紫外光下观察,4℃保存备用。
按照pEGFP质粒设计引物,P1:5′CATGCCATGGGAATGGTGAGCAAGGGCGAG3′;P2:5′GCGCGTCGACGGCTTGTACAGCTCGTC3′。采用PCR方法,以pEGFP质粒为模板,以P1、P2引物扩增EGFP基因片段。用PCR Beads进行扩增反应,每个Beads中加双蒸水20μL,上、下游引物各2μL、模板1μL。PCR扩增体系为25μL,混匀各成分,矿物油覆盖液面。PCR反应条件:94℃变性5min,94℃ 30s,55℃ 30s,72℃ 60s,35个循环,72℃ 10min。将PCR产物行10g/L(1%)TBE琼脂糖凝胶电泳,紫外灯下观察。
1.3 pEGFP真核表达质粒的大量提取与纯化
取经鉴定的含pEGFP质粒的菌株于37℃快速振荡培养过夜,转接种到500mL含50mg/L Amp的LB培养液中,37℃快速振荡培养8-10h,测A值至0.4-0.6,加入氯霉素使终浓度为170g/L,继续振荡培养6h。4℃,4000r/min,离心10min,弃上清,收集细菌沉淀物。用Qiagen tip 500进行质粒提取和纯化(具体步骤参见操作手册)。行10g/L TBE琼脂糖凝胶电泳分析,80V/40mA电泳,紫外光下观察,4℃保存备用。紫外分光光度计测定质粒的A260和A280,进行DNA定量,终浓度调节至100g/L。
1.4 Hela细胞的培养及pEGFP真核表达质粒的转染
用RPM 1640完全培养基并辅以100mL/L胎牛血清、青霉素、链霉素各100mg/L,在37℃、50mL/L CO2条件下培养Hela细胞。转染前2周进行G418最小致死浓度试验。转染前18h,将处于对数增长期的Hela细胞胰酶消化传代。将Hela细胞均按每孔约2×105细胞接种于6孔培养板中,至细胞密度大约为60%时,弃去细胞培养液,用无血清培养基洗涤细胞1次,用Cellfectin进行转染。配置以下溶液:A液:5μL pEGFP真核表达质粒加入95μL灭菌去离子水;B液:6μL Cellfectin加入94μL灭菌去离子水。A、B液轻轻混匀,室温放置30min。用无血清、无抗生素的RPM 1640培养基洗涤细胞3次后,逐滴加入AB混合液,培养10h后更换完全培养基培养(具体方法参照Invitrogen公司Cellfectin操作手册)。每间隔24h,倒置荧光显微镜下观察EGFP的表达情况。
1.5 稳定表达EGFP的Hela细胞的筛选
转染3d后,根据G418最小致死浓度试验,用含800g/L G418的完全培养基培养,3-4d后,当对照组细胞大部分死亡时,改用含600g/L G418的选择培养基筛选,每2-3d换液传代,经过14d培养后,采用有限稀释法,将Hela细胞移入培养板内,用G418持续筛选,适时更换培养液并传代。期间用荧光显微镜和激光共聚焦显微镜检测EGFP表达,选择表达荧光强度明显的克隆再次G418筛选及克隆化培养,并不断重复此流程,直至检测出均表达绿色荧光的Hela细胞克隆扩大培养并传代培养。
2 结 果
2.1 pEGFP质粒的PCR鉴定
用P1、P2引物从pEGFP质粒中扩增EGFP基因片段(图1)。
2.2 稳定表达EGFP的Hela细胞的筛选
Hela细胞转染24h后,在倒置荧光显微镜下,部分细胞即可见绿色荧光,此后随着时间的延长,发射绿色荧光的Hela细胞数量增多,转染72h时,大约80% Hela细胞内均可见绿色荧光(图2)。此后,随着G418的使用和培养时间的延长,表达和不表达EGFP的Hela细胞均出现大量死亡,呈飘浮状,细胞生长缓慢。2周后,阴性细胞逐渐减少,阳性细胞持续增多。经过有限稀释法选择荧光较强的Hela细胞并不断筛选及克隆化培养,获得均表达绿色荧光的Hela细胞克隆扩大培养并传至10代以上,将此细胞株命名为HelaEGFP。
2.3 HelaEGFP细胞中EGFP荧光特性的观察
利用激光共聚焦显微镜对筛选的HelaEGFP细胞进行观察,发现在蓝光(-395nm)激发时,HelaEGFP细胞能发射绿色荧光,其激发波长和发射波长与理论值(最大光吸收波长为395nm,最大发射峰为509nm)一致。
3 讨论
自从1962年Shimomura等[7]首次从多管水母属(aequorea victoria)中分离纯化出了绿色荧光蛋白,特别是1994年GFP基因的成功克隆和表达[5] 之后,以GFP为代表的荧光蛋白技术获得了突破性的进展,并得到不同突变体的蛋白[8]。GFP基因全长720bp,编码238个氨基酸,GFP分子质量约为27ku。能够吸收蓝光(395nm处有最大光吸收),发射绿色(或黄绿色)荧光,最大发射峰为509nm。Yang等[9]研究表明,GFP是由两个相当规则的内含一个α螺旋和外面包围11个β折叠链的β桶状结构(βbarrel)组成的二聚体。GFP的生色基团由位于第65-67位的3个氨基酸:丝氨酸酪氨酸甘氨酸自身催化环化形成的对羟基苯咪唑啉酮(4phydroxybene5imidazolinone)构成,位于β桶状结构组成的二聚体内部。GFP荧光特性十分稳定,不易淬灭,对细胞无毒害,不影响细胞的正常生长和功能。EGFP是经过改造的GFP,即原GFP发生PHe64Leu、Ser65Thr突变,使其荧光增强4-35倍[8]。将EGFP基因与目标蛋白基因融合,构建融合基因表达融合蛋白(fusion protein),即荧光标记蛋白,已成为研究目标基因表达及其细胞内定位、转运及其与对手蛋白相互作用的重要手段。因此,本研究采用EGFP进行目标蛋白的荧光标记,较GFP融合蛋白更易被检测。
采用荧光标记技术进行肿瘤细胞的标记成为目前进行肿瘤侵袭转移的重要方法。目前,肺癌、前列腺癌、黑色素瘤、结肠癌、胰腺癌、乳腺癌、卵巢癌和脑肿瘤的原位GFP肿瘤的整体荧光成像模型已建立[1012]。因此,该研究直接将pEGFP 真核表达质粒转染Hela细胞,采用G418进行阳性细胞的筛选。该研究利用激光共聚焦显微镜对筛选的HelaEGFP细胞观察证实HelaEGFP细胞中EGFP激发波长(-395nm)和发射波长与理论值(最大光吸收波长为395nm,最大发射峰为509nm)一致。说明在HelaEGFP细胞中,EGFP蛋白仍维持了其原有的空间构象,保持了其固有荧光特性[1112]。此外,连续培养结果也证实,稳定表达EGFP的HelaEGFP细胞形态与Hela细胞无差异。
建立的HelaEGFP细胞株可用于宫颈癌的可视化研究。为今后进行宫颈癌瘤侵袭转移发生机制及其动物实验治疗模型的建立提供了理想的细胞株。
参考文献
[1]Adusumilli PS, Stiles BM, Chan MK, et al. Realtime diagnostic imaging of tumors and metastases by use of a replicationcompetent herpes vector to facilitate minimallyinvasive [J]. FASEB J, 2006,20(6):726728.
[2]Seisenberger G, Ried MU, Endre T, et al. Realtime singlemolecule imaging of the infection pathway of an adenoassociated virus [J]. Science, 2001, 294(5548):19291932.
[3]Van Roessel P, Brand AH. Imaging into the future: visualizing gene expression and protein interactions with fluorescent proteins [J]. Nature Cell Biol, 2002, 4(1):1520.
[4]LippincottSchwartz J, Patterson GH. Development and use of fluorescent protein markers in living cells [J]. Science, 2003, 300(5616):8791.
[5]Chalfie M, Tu Y, Euskiechen G, et al. Green fluorescent protein as a marker for gene expression [J]. Science, 1994, 263(5148):802805.
[6]Skosyrev VS, Rudenko NV, Yakhnin AV, et al. EGFP as a fusion partner for the expression and organic extraction of small polypeptides [J]. Protein Expr Purif, 2003, 27(1): 5562.
[7]Shimomura O, Johnson FH, Saiga Y. Extraction, purification and properties ofaequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea [J]. J Cell Comp Physiol, 1962, 59:223227.
[8]Cormack BP, Valpia R, Falkow S. FACS optimized mutants of the green flouresccent protein [J]. Gene, 1996, 173(1 Spec No):3338.
[9]Yang F, Moss LG, Phillips GN Jr, et al. The molecular structure of green fluorescent protein [J]. Nat Biotechnol, 1996, 14(10):12461251.
[10]Hoffman R. Green fluorescent protein imaging of tumour growth, metastasis, and angiogenesis in mouse models [J]. Lancet Oncol, 2002, 3(9):546556.
[11]MoshitchMoshkovitz S, Tsarfaty G, Kaufman DW, et al. In vivo direct molecular imaging of early tumorigenesis and malignant progression induced by transgenic expression of GFP Met [J]. Neoplasia, 2006, 8(5):353363.
[12]Bogdanov AA Jr, Lin CP, Simonova M, et al. Cellular activation of the selfquenched fluorescent reporter probe in tumor microenvironment [J]. Neoplasia, 2002, 4(3):228236.