二、采暖供热系统能耗和经济性
1. 能耗
传统采暖系统消耗的能量是燃料,而电动采暖系统所消耗的能量是电能。因此,为更全面分析各采暖系统效率,采用一次能耗率作为所耗能评价指标。一次能耗率即单位供热量所消耗的一次能源量。图2为采暖系统在单位供热量与相应的一次能量之间的能量平衡图。其中η为采暖系统供热效率,即供热量与输入能耗之比。对于热泵系统,η为热泵性能系数与系统管道效率之积,对于锅炉供热系统,η为锅炉采暖系统的热效率与系统管道效率之积,对于热电厂,η为热电厂供热量与燃料量之比;ηe为热电厂的发电效率。
表1采暖系统有关参数的取值 | ||||||
采暖初投资(元/kW热) |
供热 | |||||
热源 |
管道 |
末端 |
合计 | |||
传统 |
家用燃气炉灶 |
500 |
100 |
200 |
800 |
0.90 |
燃气锅炉房 |
1000 |
300 |
200 |
1500 |
0.90 | |
热电联产 |
3000 |
500 |
200 |
3700 |
0.55 | |
电炉 |
普通电暖器 |
500 |
- |
- |
500 |
1.00 |
相变蓄能电暖器 |
2000 |
- |
- |
200 |
1.00 | |
电锅炉 |
1000 |
300 |
200 |
1500 |
0.95 | |
热泵 |
家用热泵 |
1200 |
- |
- |
1200 |
2.60 |
大型热泵 |
1500 |
300 |
200 |
2000 |
2.60 | |
其他 |
热电联产发电效率 | 0.20 | ||||
电力系统发电效率 | 0.33 | |||||
天然气管网追加投资(元/kW热) | 600 | |||||
煤价(元/kWh) | 0.035 | |||||
天然气价(元/kWh) | 0.141 | |||||
折旧率 | 0.07 |
转贴于 对于锅炉采暖系统,单位供热量b为:
对于热电联产系统,1/η份的燃料在提供1份热量的同时,又发出ηe/η份电量。如果这些电由电力系统中其他电厂产生,则需耗费的燃料量为为电力系统发电效率。于是,单位供热量热电联产系统的一次能耗为: 2. 经济性
采暖供热系统的经济性可从单位供热容量年运行成本加以评价,年运行成本C由初投资的折旧和运行费组成。为使问题更加简明,在运行费中仅考虑能耗费。
在经济分析中,采暖系统消费和产生单位电量的价值在不同时刻是不同的。小时级的单位电能生产和消费的价值可由电能价值当量衡量和反映[2]。电力负荷高峰期和低谷期电能价值当量是不同。图4给出了我国某电网小时级电能价值当量典型日分布。
对于热电联产系统,年运行成本由下式获得: 其中,k为热电联产系统初投资,元/kw(热);r为折旧率;f为燃料费;e为热电厂发电的电能价值当量,元/kw.h。
而燃气锅炉采暖系统,年运行成本由下式计算:
对于电动采暖系统,年运行成本可计算为: 转贴于 与燃气锅炉相比,热泵采暖在经济和能耗方面并不占有明显优势,但从国家角度看,作为发电主要能源的煤要比天然气丰富得多、廉价的多,因而从这一角度看,电动热泵的应用比燃气锅炉更适合我国的国情。目前普遍存在的电力过剩也会给电动热泵的发展起到推动作用。
但是,电动热泵系统的不足之处是设备运行性能易受环境条件的限制。风冷热泵对气候的要求较高,一般不适于冬季气温寒冷的城市采暖供热。随着气温的降低,热泵的出力反而减小,因而往往需要辅助加热装置,如图6所示。一般环境温度在-5℃以下后,热泵的工作状态明显恶化,在一定的温湿度条件下会在空气侧换热器翅片管的表面结霜。水源热泵在需要同时制热制冷的场合使用较为有利,在有清洁的江河湖水的地方也可使用。
由此看来,在环境保护要求高的地方,如果外界条件许可,可以鼓励使用热泵采暖。如果拥有可利用水源,可优先考虑使用水源热泵,当气候条件合适时,可采用风冷热泵。目前,电动热泵作为采暖的一种方式已开始得到应用,如北京的建国门饭店、建行西单分理处等均采用风冷电动热泵采暖。但是,热泵采暖在北方的推广,仍需在技术和运行经验等方面作进一步的研究和实践工作。
3)利用蓄热(TES)的电动采暖系统
电动采暖系统的应用和推广,应以电力相对富裕为前提。实际上,电力方面最突出的问题是峰谷差的不断拉大。如果电采暖系统仅在电力低谷期运行,则会削减电力负荷的峰谷差,有利于电力网的安全稳定运行。从经济上看可使用便宜的谷价电能,使电采暖系统运行成本的大幅度降低。而要实现电采暖系统电力低谷运行,则需要利用蓄热装置。
我国蓄热的应用较少,主要集中在余热或废热利用等方面。蓄热装置的作用表现为平衡供热量和热负荷之间的关系、减小设备容量和提高系统效率等方面。因此,在采暖热负荷一定的情况下,改变不同时间电采暖系统供热量的大小,在电力低谷期多用电供热,电力高峰期少用电或不用电供热,供热量与热负荷之间的平衡可通过蓄热装置实现,从而达到减小电力峰谷差的目的。
蓄热型式按蓄存介质的不同有直接蓄存和间接蓄存两种。间接蓄存采用某种中间介质作为蓄存介质来蓄热。这种蓄热方式的蓄热温度较高,如岩和油组成的蓄存介质蓄热温度达304℃,而用一种熔化的硝酸盐作为蓄热介质蓄热温度可达566℃[3],但间接储存方式的投资大,而采暖空调所用热量温度相对较低,故不宜采取这种蓄热方式。
直接蓄热可将待蓄存的热水或蒸汽直接储存在蓄热容器内。直接蓄热又可分为无压蓄热和有压蓄热。无压蓄热方式最高蓄热温度可达95℃,且投资低。有压蓄热方式是将蒸汽或高温热水直接存蓄在球状或圆柱形压力容器内,蓄热温度最高可达200℃。但有压蓄热方式投资大,相当于无压方式的2至5倍[4]。
● 热水蓄热装置 由于采用蓄热,从整体的角度看,电动采暖系统起到了对电网的削峰填谷作用,从局部上讲,由于消耗的是低价电能,采暖系统的运行成本会大幅度降低。但是,采暖设备的投资也会相应增加,因为热源容量与无蓄热时相比增大了,同时又增加了蓄能设备。从能耗方面看,由于蓄能损失,与无蓄热相比,系统的能耗增加了。对于热泵系统,由于提高制取热量的温度,热泵性能系数显著降低,同样增大了系统能耗。
表2 各蓄热采暖系统有关指标的对比(采暖面积:1万m2,采暖指标:35w/m2) | ||||||||||
系统型式 |
蓄热容量(GJ) |
无压热水蓄热 |
有压热水蓄热 |
相变蓄热 |
耗电功率(kW) |
电力削峰 | ||||
蓄热温度范围(℃) |
蓄热容积(m3) |
蓄热温度范围(℃) |
蓄热容积(m3) |
蓄热温度范围(℃) |
蓄热容积(m3) |
有蓄热 |
无蓄热 | |||
电锅炉 |
18.7 |
40~90 |
85.1 |
40~190 |
33.1 |
- |
- |
866.9 |
433.4 |
866.9 |
电动热泵 |
40~70 |
141.7 |
- |
- |
- |
- |
433.4 |
216.7 |
433.4 | |
相变蓄热电暖器 |
- |
- |
- |
- |
500 |
11.2 |
823.6 |
411.8 |
823.6 |
在大气污染日益严重、电网峰谷不断拉大的形势下,城市采暖供热应选择合理的形式和运行方式,在保证供热效果的同时,为环保和电力作出贡献,实现整体效益的最大发挥。
在所有采暖供热形式中,传统的燃煤锅炉采暖虽然运行成本低,但会造成大量粉尘和有害气体的排放,对大气的污染最为严重,因而应严格限制在市区的使用。
电炉采暖能源转换效率低,耗电量大,经济性最差。所以应严格控制使用。但是电暖器启停调节灵活,可减少最大采暖负荷小时数,在使用区对环境不产生污染,因而对于采暖需求时间短的用户,可以考虑选择采用电暖器。电锅炉系统能耗和经济性等方面都明显不如其他采暖系统,不宜鼓励使用。
以热电厂为热源的区域供热系统有明显的经济优势。当充分保证热电厂全年拥有足够热负荷的前提下,应优先考虑热电联产供热系统的使用。
燃气锅炉虽然是解决环境污染问题的一种采暖途径,但运行成本高,燃气管道的建设会增加系统初投资。因此,燃气锅炉的使用应慎重进行。
热泵应作为解决环境污染问题的有效途径,鼓励在气候条件或水源条件允许的地区加以使用。热泵的使用在多数地区刚刚起步,应在试点工程积累运行经验后再加以推广应用。
电动采暖装置增加蓄热装置后,可对电网起到削峰添谷的作用,但会导致采暖系统的初投资、能耗和占地面积增加等问题。在电力峰谷差不断拉大的今天,蓄热在电动采暖中的应用应该引起充分重视。
参考文献
[1]汪训昌 蓄冷空调移峰填谷及节电 中国能源 1996.11
[2]Mao-Song Yen Time-of-day electricity Pricing Using Optimal Mix of Generation system CIRED'93,Bermingham,May,1993.
[3]G.培克曼等著 蓄热技术及其应用 机械工业出版社
[4]S. HORII et al., Optimal Planning of Gas Turbine Cogeneration Plants Based on Mixed-integer linear Programming. International Journal of Energy Research Vol. 11. 1987
[5] 张寅平等 相变蓄能电暖器专利申请书 申请中 清华大学热能系暖通空调实验室
附录 相变蓄热电暖器的原理
相变蓄热电暖器的原理如下图所示,相变蓄热电暖器包括温控、时控的双重控制开关、电加热装置、换热容器、密闭在其中的相变材料和保温隔热外套组成。其特征在于时控开关内固化了时控程序,使电加热器只能在某一时间段内(电网负荷低谷段)接通。当电加热装置接通电源后,相变材料开始升温融化。当相变材料完全融化时,温控开关使加热装置停止工作,这时热量主要由相变材料以潜热方式储存起来。在室内需要加热的时候,打开风门或开启电扇,电暖器开始对外放热,液态的相变材料逐渐凝固,同时放出凝固热。由于相变过程为近似等温过程,相变潜热较大,故即使在不通电的情况下也能近似等温放热较长时间。实际应用中,电暖器外部设置隔热套,能达到很好的保温效果。隔热套保证所蓄热量存在于电暖器内,需要取暖时,隔热套部分或者全部打开,换热容器向外放出热量。隔热套的形状可以做成带有进出气门的整体箱式结构,在出气口可设置排风扇,也可以不设置风扇,完全依靠自然对流和室内空气进行热交换。