关于解读高中数学中的抽象函数

论文价格:0元/篇 论文用途:仅供参考 编辑:论文网 点击次数:0
论文字数:**** 论文编号:lw202367686 日期:2024-05-24 来源:论文网

   抽象函数问题是高中函数中的一类综合性比较强的问题,学生往往感到无从下手。解决这类问题要求学生抽象思维能力、综合运用数学知识的能力较强,但是,教师只要引导学生准确掌握所学基本初等函数的图象和性质,分清是哪一类函数的抽象,可以优化思路,使问题难度降低,从而得以解决。
   下面举例说明:
  形如f(x+y)=f(x)+f(y)+m(m为常数)
  思路:看作 一次函数的抽象,联想一次函数的图象及性质。特例:m=0时,联想过原点的直线。
   例1.函数f(x)对任意的a、b∈R,都有f(a+b)=f(a)+f(b)-1,并且当x>0时,f(x)>1.
   (1)求证:f(x)是R上的增函数;
   (2)若f(4)=5,解不等式f(3m2-m-2)<3.
(1)证明:设x1<x2,则△x=x2-x1>0,
   ∵x>0时,f(x)>1
   ∴f(x2-x1)>1,
   ∵f(x2)-f(x1)=f(x1+x2-x1)-f(x1)
   =f(x1)+f(x2-x1)-1-f(x1)
   =f(x2-x1)-1>0
   (2) ∵f(4)=f(2+2)=2f(2)-1=5,∴f(2)=3.
   又f(x)是R上的增函数,
   ∴f(3m2-m-2)<3 f(3m2-m-2)<f(2)
   ∴f(x)是R上的增函数.∴f(3m2-m-2)<3
   f(3m2-m-2)<f(2)
   3m2-m-2<2 -1<m<
   解得不等式解集为{m|-1<m< 4/3 }.
  点评 1.回归定义,充分运用已知条件:x>0时,f(x)>0 △x=x2-x1>0,f(x2-x1)>1            
   2.等价转化思想:运用函数的单调性,去掉函数符号,转化为解关于m的不等式。
  
   思路:联想幂的运算性质,可看作指数函数的抽象,结合指数函数的图象和性质进行解题。

免费论文下载中心


  
  
    
   抽象函数问题,需要综合运用函数的奇偶性,单调性,周期性,对称性等性质,应用分析,逻辑推理,联想类比等数学思想方法。
   常见题型有:
   ①求抽象函数的某一函数值:根据函数结构特征,用赋值法。
   ②判(证)抽象函数的单调性:类比所学具体函数,充分运用已知条件,对变量合理赋值。
   ③解关于抽象函数的不等式:一看定义域,一看单调性。
   只要掌握相应的解题策略,问题便会化难为易,迎刃而解。

免费论文下载中心
如果您有论文相关需求,可以通过下面的方式联系我们
客服微信:371975100
QQ 909091757 微信 371975100