(四)教学内容和教学目标
《新大纲》的教学内容分三部分:必修课,限定选修课,任意选修课。
1.必修课
必修课共11部分内容,安排252课时,占必修课时的90%,另外28课时作为教学的机动时间,占必修课时的10%。
(1)集合、简易逻辑(16课时)
①简易逻辑内容包括命题,逻辑联结词,四种命题,充要条件。命题、四种命题均为初中移到高中的内容,要求没有提高。
②充要条件原来在解析几何中讲授,安排较靠后,学生训练时间短,教学效果不理想,移到数学课开始学习,既作为数学的语言来学习,又可以在后续课中得到广泛使用和训练,这样效果更好些。
③逻辑联结词只要求理解或、且、非的含义,而且这三个词原来分散在高中数学内容中使用,没有集中系统讲授。这次集中的目的一是明确其含义,二是有充分的例题说明,对于提高数学素养有积极作用。而对于量词(如每一个、某一个等)仍然随教学内容只使用,不专门明确讲授其含义,这样不会因学生学习名词过多,影响集中讲授教学的效果。
(2)函数(30课时)
①删去了幂函数、换底公式、简单的指数方程和对数方程。
②指数概念的扩充、有理指数幂的运算性质、对数、对数的运算性质为初中移到高中的内容。 但为了讲指数函数、对数函数的图象和性质,主要讲授有理指数及其运算性质、对数及其运算性质,而不讲根式的运算。常用对数及其利用常用对数进行计算等,这些内容在引进计算器以后都可以删减或简化。
③增加了函数的应用举例。这一方面增加了数学的应用内容,另一方面将原来较弱的内容,如函数图象及其变换的初步知识,可以通过应用举例的形式让学生初步了解。
(3)不等式(22课时)
①在教学目标中对掌握“两个正数的算术平均数不小于它们的几何平均数”的定理的程度进行限制,不扩展到3个乃至n个的情形。这是降低要求的限定。
②不等式的证明,指出了只限于用分析法、综合法、比较法等几种常用方法,这也是一种降低要求,防止教学上任意扩大内容的提法。
③因为初中不讲一元二次不等式的解法,所以不等式解法应包含在这部分内容中,它也是学习其他简单的不等式解法的基础。
(4)平面向量(12课时)
①平面向量的内容集中安排在我国高中数学教学大纲中还是首次,第一,这部分知识很重要,第二,它是数形结合的桥梁,可以将形的内容转化成数的运算,第三,它可以在后续内容中广泛的使用。
②平面向量的这些内容多数在高中数学教学内容中都有,它们分散在代数的复数单元和解析几何的起始内容中,由于向量具有很好的运算性质和与代数相似的运算律,所以并不难学。
③平面向量的数量积是新增的内容,这也是为了应用的需要,而有物理知识和几何内容作为背景,学习起来也不困难。
④平移实际是向量的一种重要的性质。这节内容实际是原来平面三角中图象的平移和解析几何中坐标轴平移内容的合并,这样既让学生了解几何的初等变换的初步知识,又解决两处平移讲法角度不一致而使学生掌握起来有一定的困难的问题。
(5)三角函数(46课时)
①删去了余切函数的图象和性质,半角的正弦、余弦、正切,三角函数的积化和差与和差化积。
②由于任意角三角函数的余切、正割、余割只要求“了解”,这样同角三角函数的八个基本关系式只要求掌握其中的两个,诱导公式也只限于掌握正弦、余弦的诱导公式,这就使恒等变形的内容将大大减少,要求降低。
③正弦定理、余弦定理、解斜三角形举例是由初中移到高中的内容。由于解斜三角形只限于举例,并且借助计算器,学习难度降低。
④增加了实习作业,其内容是以解斜三角形为素材,以增强学生用数学的意识。
(6)数列、数学归纳法(16课时)
①数列的极限及其四则运算移到限定选修课。
②选学内容的函数极限及其四则运算、极限的简单应用移到限定选修课,与相应的内容合并 。
(7)直线和圆的方程(24课时)
①删去了直线方程的斜截式与截距式。
②增加了用二元一次不等式表示区域、简单的线性规划问题、实习作业,这些都是为了增添 用所学数学知识解决实际问题的内容。
③将直线、圆的参数方程由原来选学内容改为必学内容,一是为了分散参数方程内容的难点,降低要求,二是将参数方程的内容提前讲授,以便后续内容的学习可以运用参数方程的思想。
(8)圆锥曲线方程(20课时)
①删去了椭圆、双曲线、抛物线的尺规画法。
②将椭圆参数方程由原来的选学内容改为必学内容。
(9)直线、平面、简单几何体(36课时)
①大纲给出了A、B两个方案。方案A的内容包括原《立体几何》中《直线和平面》一章的内容,《多面体和旋转体》一章的棱柱、棱锥和球的内容。方案B在方案A的基础上,增加空间向量的初步知识。教学中在A和B两个方案中只选一个试验,待试验结束时再确定其中之一写入《新大纲》。
②两个方案中均删去了棱台的概念、性质、画法及其表面积,圆柱、圆锥、圆台的概念、性质、画法及其表面积,旋转体,球冠及其面积,体积的概念与公理,球缺的体积等内容。
③教学目标中保留棱柱、棱锥的概念、性质和画法的教学要求,删去了柱、锥的表面积的教学要求。义教初中数学教学大纲已有“圆柱和圆锥的侧面展开图、侧面积”的教学内容及其相应内容的教学要求;棱柱、棱锥、棱台的体积已分散在小学、初中及高中有关的章节,圆柱、圆锥的体积移到理科的限定选修的“旋转体的体积”(积分)内容中讲授。
④方案B是利用空间向量作为工具处理传统的综合几何的改革方案,空间向量的内容是将平面向量的有关知识推广到三维空间,因而安排的课时较少。
(10)排列、组合、二项式定理(18课时)
这部分内容与原大纲一致。
(11)概率(12课时)
①这部分内容为原大纲选学内容,现改为必学内容。将原大纲中复数内容分为两个层次,分别移到理科限定选修和文科(实科)限定选修内容中。
②原大纲中选学内容的反三角函数与三角方程已删去。原大纲中选学内容“极坐标”已删去,在理科限定选学内容的积分中有简单介绍,选学内容的“参数方程”部分内容分散到直线与圆的方程、圆锥曲线方程中,但只限于直线参数方程、圆的参数方程和椭圆的参数方程。
2.限定选修课
理科限定选修课共5部分内容,安排84课时,占理科限定选修课时的80%,其剩余20课时作为教学的机动时间。文科(实科)限定选修课共3部分内容,安排42课时,占文科(实科)限定选修课时的80%,其剩余10课时作为教学的机动时间。
3.任意选修课
任意选修课的内容可以选学有关数学应用、拓宽知识面、数学历史等方面的内容。如数学在经济生活中的应用,增长率的模型及其应用,数学在计算机中的应用,简单的最优化问题,矩阵知识简介,组合数学初步,《九章算术》的光辉成就等。
免费论文下载中心(五)教学中应该注意的几个问题
首先说明数学教学要以普通高中课程计划为依据,全面贯彻教育方针,实现数学教学目标,这是总的教学原则和指导思想,然后提出如下几方面:
面向全体学生
加强思想品质教育
坚持理论联系实际
重视基础知识教学、基本技能训练和能力的培养
正确组织练习
改进教学方法和教学手段
(六)教学测试和评估
测试与评估必须以教学目标为依据。
《新大纲》中对测试与评估的目的提出三点:一是评定学生的学习成绩,二是激励学生努力学习,三是及时反馈,以便教师改进教学。
《新大纲》指出:“要控制考试次数”、“试题要体现教学重点,难易适当,不出偏题、怪题和助长死记硬背的题目”,这些提法都是针对当前教学测试中存在的主要问题提出,期望在素质教育的过程中起到良好的作用。
《新大纲》规定必修课内容作为各省、自治区、直辖市制订高中数学会考标准的参考。必修课内容加理科限定选修课内容,作为理工农医类高考的数学命题范围;必修课内容加文科限定选修课内容,作为文史类高考的命题范围。
三、新大纲的特点
《新大纲》具有以下几个特点。
(一)精简内容
在保证基础知识教学、基本技能训练、基本能力培养的前提下,进一步删减了传统的初等数学中其次要的、用处不大的,而且是学生接受起来有一定困难的内容。如删减了幂函数、指数方程、对数方程、部分三角恒等变形公式、反三角函数、三角方程,立体几何中的面积与体积计算等,将复数由必修改为限定选修,降低某些内容的教学目标等,据此编写的教材也要相应删减部分定理及繁难证明,删减偏怪的例习题等。
我国现行高中数学课程教学内容陈旧,理论要求偏高,方法落后。现行高中数学教学大纲中的必学内容中除集合思想有所渗透外,其他基本上只包括17世纪以前的代数、几何的内容,其他国家在高中数学中占有重要地位的概率、微积分初步,以及有广泛应用的向量、统计等内容均未列入我国高中必学的教学内容。可以说,与国外相比,我国高中的教学内容是最陈旧的。另一方面有些内容又讲得贪多求全,如幂函数在很多国家的中学不讲,甚至在我国的高等数学中也只是形式化的给出定义。而我们的高中教材中不仅分情况进行讨论,而且对其性质及其证明追求全面、追求“严谨”,这种处理方法,对大多数学生,特别是将来不是专门学习数学专业的学生来说是不必要的,要求上也是不适当的。很多国家中学数学在引进向量后,利用向量作为工具处理某些内容,既直观又易于接受,而我们仍然是传统讲法,几十年不变。因此,不仅我们的教学内容陈旧,讲法也落后。
(二)更新部分知识内容和讲法,更新教学手段
这次《新大纲》增加部分新的知识。如简易逻辑、平面向量、空间向量、概率统计、微积分初步等,这些知识都是进一步学习的基础,也是有着广泛应用的数学知识,实践证明也是中学生能够学习的内容。
更新传统内容的讲法和部分数学语言也是这次《新大纲》的特点,如更广泛地使用集合语言、逻辑联结词,以及使用向量工具处理某些传统内容等。引进向量后,可以改变用综合法处理立体几何的传统讲法。
更新教学手段也是这次制订《新大纲》予以重视的问题。高中数学应当使用计算机等现代化教学手段。初中阶段已将计算器列为教学内容,高中数学中的计算、统计等内容的学习应该广泛使用,有条件的学校还可以借助计算机作为教学辅助手段,以加深对有关知识的理解。
现行教学大纲是在1978年教学大纲的基础上制订的,1983年以后几次删减教学内容,降低教学要求,造成现在的高中数学教学内容偏少,知识面狭窄。与解放后的几个主要数学教学大纲相比,其内容是最少的。教学内容偏少,知识面过窄,使多数学校三年课程两年学完,用一年的时间复习,搞题海战术,抠难题怪题,造成许多学生现在学的没有用,而将来有用的现在又没有学,这样不仅仅浪费了宝贵时光,而且对提高民族文化素质极为不利。
(三)增加灵活性
根据学生毕业后的不同去向和学习能力的差异,《新大纲》实行三种不同的要求,高中一二年级的教学内容和教学要求相同,作为共同的基础。高中三年级分三种不同的水平,即文科、实科、理科三种水平,打好分流基础。
现行高中数学课程结构单一。80年代以前的高中数学只有必修一种单一的课程。根据国家教委1990年高中教学计划调整意见,各学校实行由必修课、选修课、活动课的三个板块构成的课程结构,高一高二又有单科性的选修课。但是由于高校招生考试制度没有相应地进行改革,多数学校的选修课实际上变成以“应考”为目标的必修课的延伸,这有悖于选修课发展学生特长的宗旨,选修课等于虚设。
(四)重视数学应用
《新大纲》增加所学数学知识的应用,如增加有着非常广泛应用的概率统计等,并在有关内容学习后,安排实习作业,促进学生参与数学活动,在任意选修课内容中,有数学应用的专题,以增强学生应用数学的意识和能力。
四、几点建议
课程改革不能只孤立地改革课程本身,它必需与考试制度的改革,教师培训工作,教育科学研究等同步进行。为此,提出如下三点建议。
(一)要使考试制度的改革有利于课程改革方案的实施
应该承认,我国全国统一的高考对于“两个有利”起到良好的积极作用。高考和教学,内容和涉及的范围必须一致,“学什么,考什么”这是大家已达到共识的一条基本原则。但是不可否认,当前高考确实对中学教学有着指挥的作用,尤其在升学竞争十分激烈的情况下,“ 什么,学什么”的现象非常普遍,从而导致选学内容形同虚设,教学上分层次的课程设想完全落空。应该看到,脱离课程改革的高考改革会引起教学秩序上的混乱,影响中学的教学质量,会给高校选拔人才造成障碍。而脱离高考改革来研究课程改革,实践证明是根本行不通的。应该把两项改革结合起来考虑,共同协商,联手前进。在这方面,单独强调哪一方面的作用都未免有些偏颇。考试制度的改革应积极推进课程的改革,课程改革应该有利于人才培养,有利于人才的选拔,使两项改革都能取得成功。
(二)要根据课程改革的要求积极培训教师
要改革课程,教师是关键。很多国家的改革方案之所以难以贯彻实施,与教师对新增内容不熟悉,对课程设置方案的思想不理解密切相关。80年代初各地教研部门、教育学院,以至高等师范院校数学系为1978年教学大纲全面实施作过一番准备,使得当时新增加的内容在有些少数学校一度被重视,开设的效果也得到某些学校的承认。这说明教师培训对于课程改革有积极推动作用。因此这次数学课程改革应该通过有计划、有步骤的教师培训工作,力求在《新大纲》全面实施之前,掌握其基本改革精神,熟悉新增加的内容。当前一种可以借鉴的经验,就是教师培训工作与新的教材试验工作结合起来进行,在试验的实践中培训数学教师,在教师培训中总结新的课程改革设想的可行性。
(三)搞好数学课程的研究和教材试验工作
在《新大纲》的颁布之际,搞好数学课程的研究是完善和全面实施《新大纲》的准备,教材试验工作是论证《新大纲》可行与否的重要举措,必须给予足够的重视,认真抓好。
根据课程研究的理论,研究的内容包括:为什么学,学什么内容,怎样学习和学习效果的检测等。例如,如何确定教学目的;如何根据社会需要,学科发展,学生认知能力来确定教学内容;对新增内容的必要性和可行性论证和实验;新教材的体系如何安排更便于教便于学;新教材如何贯彻联系实际,如何处理弹性,如何培养能力等。
免费论文下载中心